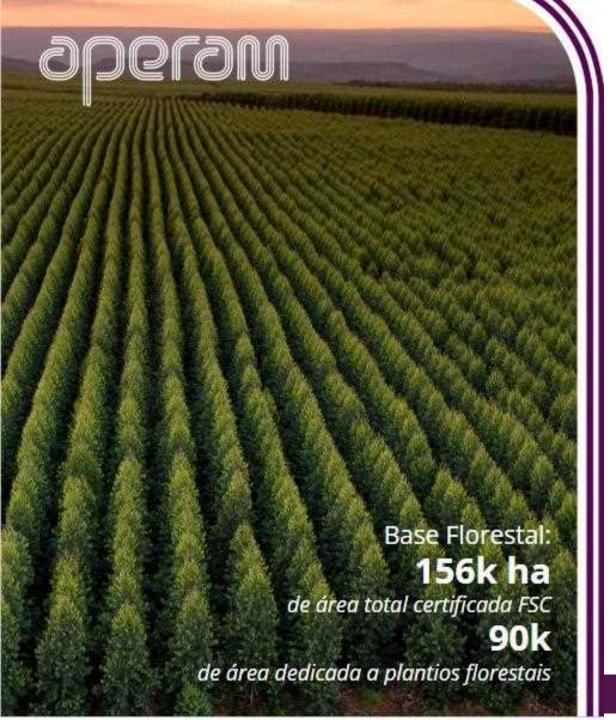
O diferencial estratégico da madeira de Corymbia

Rosália Nazareth Rosa Trindade – Aperam BioEnergia

AGENDA

Aperam - BioEnergia

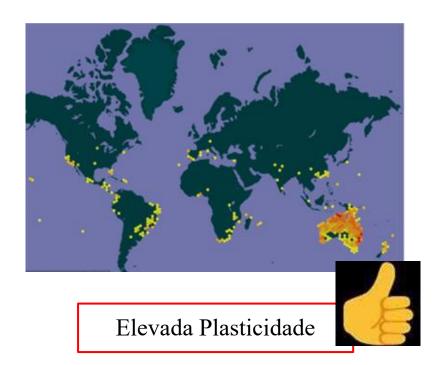

Tecnologia Genética

Características dos híbridos interespecíficos de Corymbia

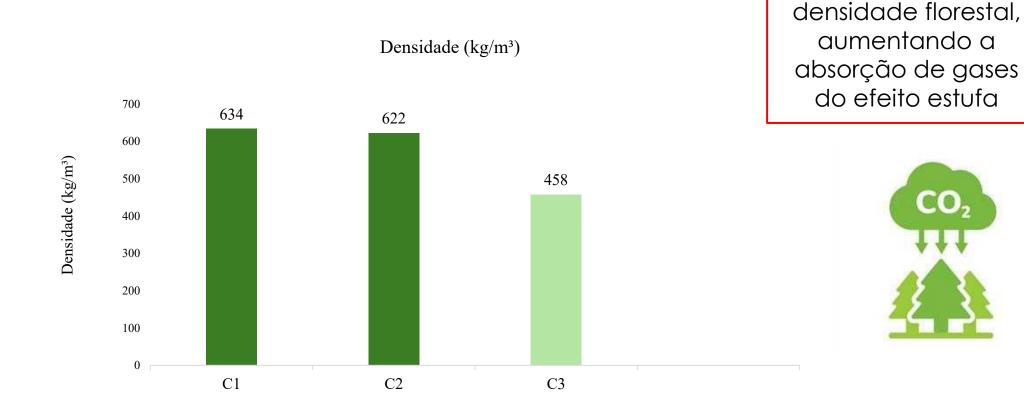
Desafios

Considerações

Portfolio de Produtos



Introdução


Eucalyptus, Corymbia e Angophora têm sido coletivamente chamados de "eucaliptos" e incluem 840 espécies

- + 113 espécies arbóreas (família Myrtaceae);
- Reclassificação do gênero Eucalyptus 90;

1 Clones com alta densidade

IMA: > 40 $m^3/ha/ano$

*Resultados obtidos nos ambientes da Aperam

Ampliam a

Material genético

2 Tolerantes a maioria das pragas e doenças

Cryphonectria cubensis - Cancro e Puccinia psidii – Ferrugem

Glycaspis brimblecombei, Thaumastocoris peregrinus e Leptocybe invasa

alta resistência a ventos, à seca de ponteiros e ao déficit hídrico

Informação Pública ALFENAS, et al., 2009

3

Alta qualidade para produção de carvão vegetal

Materiais Genéticos	Corymbia	Eucalyptus
Finos <9,52mm (%)	4,2	7,7
Rendimento gravimétrico (%)	39	37
Resistência Mecânica (%)	61	58-60

Elevada produção de bio-óleo

Qualidade do carvão

Alta qualidade para produção de celulose

INSERÇÃO TECNOLÓGICA DOS CLONES HÍBRIDOS DE CORYMBIA SPP. NA PRODUÇÃO DE POLPA CELULÓSICA – PARTE 1: POLPAÇÃO KRAFT MODIFICADA LO-SOLIDS

Marcelo Moreira da Costa^{3*}, Larissa Soares Silva³, Weslley Henrique Martins da Silva³, Rodrigo Fraga de Almeida⁴, Marcela Ribeiro Coura⁴, Gleison Augusto dos Santos², Lilian Alves Carvalho Reis⁵, Claudilene Aparecida Alves Pena⁵ e Rayanne Oliveira Teixeira⁵

Tabela 2 – Resultados de demanda de álcali efetivo (AE%), rendimento depurado da polpa, teor de sólidos secos, IMAcel e consumo específico de madeira estimado para #K=19±1.

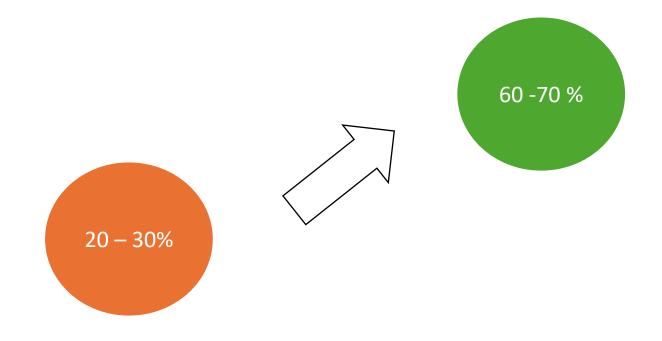
ID	DB (t m ⁻³)	AE (%) ¹	RD (%)1	IMA (m³. ha-¹.ano-¹)²	IMAcell (adt ha ⁻¹ ano ⁻¹) ³	CE _{Mad} (m³ _{Mad} .adt¹)³	Ranqueamento dos clones ⁴
1	0,608	16,1	52,5	29,0	10,3	2,82	3,65
2	0,565	15,9	51,6	34,8	11,3	3,09	3,66
3	0,507	15,4	53,5	51,8	15,6	3,32	4,70
4	0,608	16,0	54,1	67,4	24,6	2,74	8,98
5	0,582	18,9	49,8	45,9	14,8	3,10	4,77
6	0,518	16,0	52,7	37,2	11,3	3,30	3,42
7	0,472	15,8	53,6	46,0	12,9	3,56	3,62
8	0,491	15,8	53,8	59,6	17,5	3,41	5,13
9	0,470	15,6	53,2	42,2	11,7	3,60	3,25
10	0,511	16,6	51,1	39,5	11,5	3,45	3,33
11	0,431	16,8	51,1	48,2	11,8	4,09	2,89
12	0,470	16,9	52,5	46,7	12,8	3,65	3,51
13	0,488	17,3	50,9	53,6	14,8	3,62	4,09
14	0,431	16,6	51,9	47,6	11,8	4,02	2,94
15	0,519	17,6	50,8	40,0	11,7	3,41	3,43
16	0.471	17.6	51.1	55.1	14.7	3.74	3.93

Polpação kraft Lo-solids com fator H de 1.031 de acordo com o item 2.1 estimados para #k19±1.

Custo da madeira representa aproximadamente mais da metade do custo da polpa celulósica

C1 (C. citriodora x C. torelliana)

Maior
produtividade
florestal aliado ao
menor custo


² Incremento médio anual do volume florestal sem casca.

³ Valores de IMAcel e Consumo especifico de madeira baseados em polpa marrom.

^{*} Ranqueamento foi estabelecido pela relação entre IMAcell/CE_{Mat}

Desafios dos híbridos interespecíficos de Corymbia

Propagação vegetativa de Materiais genéticos de Corymbia – DIFÍCIL ENRAIZAMENTO

Considerações

- Corymbia é um gênero de alto valor pela qualidade da madeira
- Propriedades como alta densidade e boa composição de fibras a tornam competitiva para celulose e carvão vegetal
- Potencial em plantios comerciais e híbridos para maior produtividade e sustentabilidade.
- Investimento em pesquisa e melhoramento genético é essencial.

Realização

